Performance Evaluation Model of Park Based on Intelligent Algorithm

نویسندگان

  • Yang Yaliu
  • Zheng Xiaowei
چکیده

Evaluation system of industrial park is a complex problem concerning multiple levels and multiple objectives and multiple evaluation indexes. Use all the evaluation indexes as input of neural network will result in complex structure of neural network affecting performance of quality evaluation stem of park. Propose a park performance evaluation method integrating intelligence algorithm and neural network. First, adopt analytic hierarchy process to sort evaluation index bodies in accordance with importance, and then screen out indexes with important effect on evaluation result as BP neural network input. Finally, adopt neural network to establish evaluation model. Take performance assessment of a logistics industrial park as example to conduct simulation experiment, which shows park performance evaluation method based on integrated intelligent algorithm and neural network not only simplifies structure of neural network but also improve accuracy and evaluation efficiency of performance and quality evaluation to be a feasible and effective method of performance evaluation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)

This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

The Evaluation of the Team Performance of MLB Applying PageRank Algorithm

Background. There is a weakness that the win-loss ranking model in the MLB now is calculated based on the result of a win-loss game, so we assume that a ranking system considering the opponent’s team performance is necessary. Objectives. This study aims to suggest the PageRank algorithm to complement the problem with ranking calculated with winning ratio in calculating team ranking of US MLB. ...

متن کامل

Using BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT

In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016